Search results
Results from the WOW.Com Content Network
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity; Binomial inverse theorem; Binomial identity; Brahmagupta–Fibonacci two-square identity; Candido's identity; Cassini and Catalan identities; Degen's eight-square identity; Difference of two squares; Euler's four-square identity; Euler ...
A root-power quantity is a quantity such as voltage, current, sound pressure, electric field strength, speed, or charge density, the square of which, in linear systems, is proportional to power. [3] The term root-power quantity refers to the square root that relates these quantities to power.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
1. Denotes square root and is read as the square root of. For example, +. 2. With an integer greater than 2 as a left superscript, denotes an n th root. For example, denotes the 7th root of 3. ^ 1. Exponentiation is normally denoted with a superscript.
Euler's identity is also a special case of the more general identity that the n th roots of unity, for n > 1, add up to 0: = = Euler's identity is the case where n = 2. A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...