Search results
Results from the WOW.Com Content Network
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.
PARI/GP performs arbitrary precision calculations (e.g., the significand can be millions of digits long—and billions of digits on 64-bit machines). It can compute factorizations , perform elliptic curve computations and perform algebraic number theory calculations.
Hilbert matrix — example of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrix — example of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues; Convergent matrix — square matrix whose successive powers approach the zero matrix; Algorithms for matrix multiplication:
Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...
Routines for Gauss–Kronrod quadrature are provided by the QUADPACK library, the GNU Scientific Library, the NAG Numerical Libraries, R, [2] the C++ library Boost., [3] as well as the Julia package QuadGK.jl [4] (which can compute Gauss–Kronrod formulas to arbitrary precision).
Experimental mathematics as a separate area of study re-emerged in the twentieth century, when the invention of the electronic computer vastly increased the range of feasible calculations, with a speed and precision far greater than anything available to previous generations of mathematicians.
In the 1980s, Rump made an example. [ 3 ] [ 4 ] He made a complicated function and tried to obtain its value. Single precision, double precision, extended precision results seemed to be correct, but its plus-minus sign was different from the true value.
A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...