enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  3. Carry (arithmetic) - Wikipedia

    en.wikipedia.org/wiki/Carry_(arithmetic)

    For example, when 6 and 7 are added to make 13, the "3" is written to the same column and the "1" is carried to the left. When used in subtraction the operation is called a borrow . Carrying is emphasized in traditional mathematics , while curricula based on reform mathematics do not emphasize any specific method to find a correct answer.

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    A typical solution is to represent the number in a small base, b, such that, for example, 8b is a representable machine integer. Several additions can then be performed before an overflow occurs. Several additions can then be performed before an overflow occurs.

  5. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.

  6. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  7. Calculator input methods - Wikipedia

    en.wikipedia.org/wiki/Calculator_input_methods

    The simplest example given by Thimbleby of a possible problem when using an immediate-execution calculator is 4 × (−5). As a written formula the value of this is −20 because the minus sign is intended to indicate a negative number, rather than a subtraction, and this is the way that it would be interpreted by a formula calculator.

  8. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Java: Class java.math.BigInteger (integer), java.math.BigDecimal Class (decimal) JavaScript: as of ES2020, BigInt is supported in most browsers; [2] the gwt-math library provides an interface to java.math.BigDecimal, and libraries such as DecimalJS, BigInt and Crunch support arbitrary-precision integers.

  9. Saturation arithmetic - Wikipedia

    en.wikipedia.org/wiki/Saturation_arithmetic

    Here is another example for saturating subtraction when the valid range is from 0 to 100 instead: 30 - 60 → 0. (not the expected -30.) As can be seen from these examples, familiar properties like associativity and distributivity may fail in saturation arithmetic.