enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    For example, monoids are semigroups with identity. In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity.

  3. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    In algebra, a presentation of a monoid (or a presentation of a semigroup) is a description of a monoid (or a semigroup) in terms of a set Σ of generators and a set of relations on the free monoid Σ ∗ (or the free semigroup Σ +) generated by Σ. The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these ...

  4. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  5. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.

  6. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  7. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    The free group F S with free generating set S can be constructed as follows. S is a set of symbols, and we suppose for every s in S there is a corresponding "inverse" symbol, s −1, in a set S −1. Let T = S ∪ S −1, and define a word in S to be any written product of elements of T. That is, a word in S is an element of the monoid ...

  8. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    Semigroup with two elements: there are five that are essentially different. A null semigroup on any nonempty set with a chosen zero, or a left/right zero semigroup on any set. The "flip-flop" monoid: a semigroup with three elements representing the three operations on a switch – set, reset, and do nothing. The set of positive integers with ...

  9. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In the category of graphs, the product is the tensor product of graphs. In the category of relations, the product is given by the disjoint union. (This may come as a bit of a surprise given that the category of sets is a subcategory of the category of relations.) In the category of algebraic varieties, the product is given by the Segre embedding.