Search results
Results from the WOW.Com Content Network
In rocket engine design, regenerative cooling is a configuration in which some or all of the propellant is passed through tubes, channels, or in a jacket around the combustion chamber or nozzle to cool the engine. This is effective because the propellants are often cryogenic.
The major manufacturer of German rocket engines for military use, the HWK firm, [8] manufactured the RLM-numbered 109-500-designation series of rocket engine systems, and either used hydrogen peroxide as a monopropellant for Starthilfe rocket-propulsive assisted takeoff needs; [9] or as a form of thrust for MCLOS-guided air-sea glide bombs; [10 ...
The J-2X is a liquid-fueled cryogenic rocket engine that was planned for use on the Ares rockets of NASA's Constellation program, and later the Space Launch System.Built in the United States by Aerojet Rocketdyne (formerly, Pratt & Whitney Rocketdyne), the J-2X burns cryogenic liquid hydrogen and liquid oxygen propellants, with each engine producing 1,307 kN (294,000 lb f) of thrust in vacuum ...
Liquid rocket engines have tankage and pipes to store and transfer propellant, an injector system and one or more combustion chambers with associated nozzles.. Typical liquid propellants have densities roughly similar to water, approximately 0.7 to 1.4 g/cm 3 (0.025 to 0.051 lb/cu in).
These cryogenic temperatures vary depending on the propellant, with liquid oxygen existing below −183 °C (−297.4 °F; 90.1 K) and liquid hydrogen below −253 °C (−423.4 °F; 20.1 K). Since one or more of the propellants is in the liquid phase, all cryogenic rocket engines are by definition liquid-propellant rocket engines. [2]
The rocket is launched using liquid hydrogen and liquid oxygen cryogenic propellants. Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust . The energy required can either come from the propellants themselves, as with a chemical rocket , or from an external source, as with ion engines .
The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lb f) of thrust per engine in vacuum. RL10 versions were produced for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV
The lowest temperatures, used for the most powerful superconducting magnets, are reached using liquid helium. Liquid hydrogen at -250 to -265 °C can also be used as a coolant. Liquid hydrogen is also used both as a fuel and as a coolant to cool nozzles and combustion chambers of rocket engines.