Ad
related to: parallel postulate euclidean geometry
Search results
Results from the WOW.Com Content Network
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry , lines can have analogous properties that are referred to as parallelism.
Since non-Euclidean geometry is provably relatively consistent with Euclidean geometry, the parallel postulate cannot be proved from the other postulates. In the 19th century, it was also realized that Euclid's ten axioms and common notions do not suffice to prove all of the theorems stated in the Elements. For example, Euclid assumed ...
Saccheri quadrilaterals. A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum.
In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate): In a plane , given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.
Eventually in 1829, mathematician Nikolai Lobachevsky published a description of acute geometry (or hyperbolic geometry), a geometry which assumed a different form of the parallel postulate. It is in fact possible to create a valid geometry without the fifth postulate entirely, or with different versions of the fifth postulate (elliptic geometry).
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.
An axiom P is independent if there are no other axioms Q such that Q implies P. . In many cases independence is desired, either to reach the conclusion of a reduced set of axioms, or to be able to replace an independent axiom to create a more concise system (for example, the parallel postulate is independent of other axioms of Euclidean geometry, and provides interesting results when negated ...
Ad
related to: parallel postulate euclidean geometry