Search results
Results from the WOW.Com Content Network
The Australian zebra finch is used worldwide in several research fields (e.g. neurobiology, physiology, behaviour, ecology and evolution) as individuals are easy to maintain and breed in captivity. [12] Zebra finches are more social than many migratory birds, generally traveling in small bands and sometimes gathering in larger groups. [13]
The zebra finch genome was the second bird genome to be sequenced, in 2008, after that of the chicken. [32] The Australian zebra finch uses an acoustic signal to communicate to embryos. It gives an incubation call to its eggs when the weather is hot—above 26 °C (79 °F)—and when the end of their incubation period is near.
In one experimental population of zebra finches, there was increased singing activity by the male after breeding. [9] This increase is positively correlated with the partner's reproductive investment. The female finches were bred in cages with two subsequent males that differed with varying amounts of song output.
Darwin's finches with different sized beaks that were suited for different seed types. Another example of directional selection is the beak size in a specific population of finches. Darwin first observed this in the publication of his book, On the Origin of Species, and he details how the size of the finches beak differs based on environmental ...
A pedigree chart is a diagram that shows the occurrence and appearance of phenotypes [jargon] of a particular gene or organism and its ancestors from one generation to the next, [1] [2] [3] [unreliable source?] most commonly humans, show dogs, and race horses.
Such behaviour typically occurs between dominant males and females paired with subordinate males, but may also be the result of forced copulation in ducks and other anatids. [ 219 ] For females, possible benefits of extra-pair copulation include getting better genes for her offspring and insuring against the possibility of infertility in her ...
The phenotype of a homozygous dominant pair is 'A', or dominant, while the opposite is true for homozygous recessive. Heterozygous pairs always have a dominant phenotype. [ 11 ] To a lesser degree, hemizygosity [ 12 ] and nullizygosity [ 13 ] can also be seen in gene pairs.
In genetics, a maternal effect occurs when the phenotype of an organism is determined by the genotype of its mother. [1] For example, if a mutation is maternal effect recessive, then a female homozygous for the mutation may appear phenotypically normal, however her offspring will show the mutant phenotype, even if they are heterozygous for the mutation.