Search results
Results from the WOW.Com Content Network
A universal hashing scheme is a randomized algorithm that selects a hash function h among a family of such functions, in such a way that the probability of a collision of any two distinct keys is 1/m, where m is the number of distinct hash values desired—independently of the two keys. Universal hashing ensures (in a probabilistic sense) that ...
A cryptographic hash function (CHF) ... (as for any good hash), so the hash value ... are designed to meet much weaker requirements and are generally unsuitable as ...
Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash: 32 or 64 bits add,shift,xor MurmurHash: 32, 64, or 128 bits product/rotation Fast-Hash [3] 32 or 64 bits xorshift operations SpookyHash 32, 64, or 128 bits see Jenkins hash function ...
Knapsack-based hash functions—a family of hash functions based on the knapsack problem. The Zémor-Tillich hash function—a family of hash functions that relies on the arithmetic of the group of matrices SL 2. Finding collisions is at least as difficult as finding factorization of certain elements in this group.
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Non-cryptographic hash functions optimized for software frequently involve the multiplication operation. Since in-hardware multiplication is resource-intensive and frequency-limiting, ASIC-friendlier designs had been proposed, including SipHash (which has an additional benefit of being able to use a secret key for message authentication), NSGAhash, and XORhash.
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
Consistent hashing was designed to avoid the problem of having to reassign every BLOB when a server is added or removed throughout the cluster. The central idea is to use a hash function that maps both the BLOB and servers to a unit circle, usually radians.