Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
Organelles are identified by microscopy, and can also be purified by cell fractionation. There are many types of organelles, particularly in eukaryotic cells. They include structures that make up the endomembrane system (such as the nuclear envelope, endoplasmic reticulum, and Golgi apparatus), and other structures such as mitochondria and ...
An organelle in eukaryotic cells now known as Golgi apparatus or Golgi complex, or sometimes simply as Golgi, was discovered by Camillo Golgi. [22] Golgi modified his black reaction using osmium dichromate solution with which he stained the nerve cells (Purkinje cells) of the cerebellum of a barn owl. [23]
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
The Golgi apparatus plays a pivotal role in N-linked glycosylation, a process that begins in the ER and is elaborated within the Golgi. Through the sequential trimming and addition of sugars like GlcNAc, mannose, galactose, and sialic acid, the Golgi ensures that proteins are properly modified for their final functional roles.
Golgi apparatus (also called the Golgi body, Golgi complex, or dictyosome), an organelle in a eukaryotic cell; Golgi tendon organ, a proprioceptive sensory receptor organ; Golgi's method or Golgi stain, a nervous tissue staining technique; Golgi alpha-mannosidase II, an enzyme; Golgi cell, a type of interneuron found in the cerebellum
Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin. In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis.
Both organelles, the mitochondria and chloroplasts (in photosynthetic organisms), are compartments that are believed to be of endosymbiotic origin. Other compartments such as peroxisomes, lysosomes, the endoplasmic reticulum, the cell nucleus or the Golgi apparatus are not of endosymbiotic origin.