Search results
Results from the WOW.Com Content Network
Prompting LLM is presented with example input-output pairs, and asked to generate instructions that could have caused a model following the instructions to generate the outputs, given the inputs. Each of the generated instructions is used to prompt the target LLM, followed by each of the inputs.
Prompt injection is a family of related computer security exploits carried out by getting a machine learning model (such as an LLM) which was trained to follow human-given instructions to follow instructions provided by a malicious user. This stands in contrast to the intended operation of instruction-following systems, wherein the ML model is ...
The sections are then concatenated into a single document, which is passed once more to the LLM with a prompt asking it to remove duplications between the sections. Finally, the LLM is called one last time to generate a summary for the lead section. All this internal chattiness and repeated prompting of the LLM for multiple tasks comes at a price.
A question answering task is considered "open book" if the model's prompt includes text from which the expected answer can be derived (for example, the previous question could be adjoined with some text which includes the sentence "The Sharks have advanced to the Stanley Cup finals once, losing to the Pittsburgh Penguins in 2016." [122]).
Retrieval Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.
A generative LLM can be prompted in a zero-shot fashion by just asking it to translate a text into another language without giving any further examples in the prompt. Or one can include one or several example translations in the prompt before asking to translate the text in question. This is then called one-shot or few-shot learning, respectively.
Experienced editors may ask an LLM to improve the grammar, flow, or tone of pre-existing article text. Rather than taking the output and pasting it directly into Wikipedia, you must compare the LLM's suggestions with the original text, and thoroughly review each change for correctness, accuracy, and neutrality. Summarizing a reliable source.
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]