enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA methylation - Wikipedia

    en.wikipedia.org/wiki/DNA_methylation

    While DNA methylation does not have the flexibility required for the fine-tuning of gene regulation, its stability is perfect to ensure the permanent silencing of transposable elements. [33] Transposon control is one of the most ancient functions of DNA methylation that is shared by animals, plants and multiple protists. [34]

  3. Histone methylation - Wikipedia

    en.wikipedia.org/wiki/Histone_methylation

    Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how ...

  4. DNA (cytosine-5)-methyltransferase 3A - Wikipedia

    en.wikipedia.org/wiki/DNA_(cytosine-5)-methyl...

    DNA (cytosine-5)-methyltransferase 3A (DNMT3A) is an enzyme that catalyzes the transfer of methyl groups to specific CpG structures in DNA, a process called DNA methylation. The enzyme is encoded in humans by the DNMT3A gene. [5] [6] This enzyme is responsible for de novo DNA methylation. Such function is to be distinguished from maintenance ...

  5. Methylation - Wikipedia

    en.wikipedia.org/wiki/Methylation

    DNA methylation is the conversion of the cytosine to 5-methylcytosine. The formation of Me-CpG is catalyzed by the enzyme DNA methyltransferase. In vertebrates, DNA methylation typically occurs at CpG sites (cytosine-phosphate-guanine sites—that is, sites where a cytosine is directly followed by a guanine in the DNA sequence).

  6. CpG site - Wikipedia

    en.wikipedia.org/wiki/CpG_site

    Some studies have used Alu elements as a way to study the factors responsible for genome expansion. Alu elements are CpG-rich in a longer amount of sequence, unlike LINEs and ERVs. Alus can work as a methylation center, and the insertion into a host DNA can produce DNA methylation and provoke a spreading into the Flanking DNA area.

  7. DNA methylation in cancer - Wikipedia

    en.wikipedia.org/wiki/DNA_methylation_in_cancer

    DNA methylation in cancer plays a variety of roles, helping to change the healthy cells by regulation of gene expression to a cancer cells or a diseased cells disease pattern. One of the most widely studied DNA methylation dysregulation is the promoter hypermethylation where the CPGs islands in the promoter regions are methylated contributing ...

  8. Histone-modifying enzymes - Wikipedia

    en.wikipedia.org/wiki/Histone-modifying_enzymes

    The cis position induces compact histones and decreases the ability of proteins to bind to the DNA, thus preventing methylation of K36 and decreasing gene transcription. Conversely, the trans position of P38 promotes a more open histone conformation, allowing for K36 methylation and leading to an increase gene transcription. [36]

  9. Epigenetic effects of smoking - Wikipedia

    en.wikipedia.org/wiki/Epigenetic_effects_of_smoking

    DNMT1 is the enzyme involved in the maintenance of DNA methylation marks. DNMT1 is recruited to DNA during its replication, or during DNA repair. As a new DNA strand is synthesized, unmethylated cytosines are incorporated into the sequence. This leads to hemimethylated DNA, where an older methylated strand is bound to a younger unmethylated one.