Search results
Results from the WOW.Com Content Network
Depiction of smooth muscle contraction. Muscle contraction is the activation of tension-generating sites within muscle cells. [1] [2] In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. [1]
The sliding filament theory explains the mechanism of muscle contraction based on muscle proteins that slide past each other to generate movement. [1] According to the sliding filament theory, the myosin ( thick filaments ) of muscle fibers slide past the actin ( thin filaments ) during muscle contraction, while the two groups of filaments ...
The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. [1] It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, following a period of robust contraction and pumping of blood, called systole. [1]
Since work is defined as force multiplied by displacement, the area of the graph shows the mechanical work output of the muscle. In a typical work-generating instance, the muscle shows a rapid curvilinear rise in force as it shortens, followed by a slower decline during or shortly before the muscle begins the lengthening phase of the cycle.
A stretch-shortening cycle (SSC) is an active stretch (eccentric contraction) of a muscle followed by an immediate shortening (concentric contraction) of that same muscle. Research studies [ edit ]
Cardiac cells have two refractory periods, the first from the beginning of phase 0 until part way through phase 3; this is known as the absolute refractory period during which it is impossible for the cell to produce another action potential. This is immediately followed, until the end of phase 3, by a relative refractory period, during which a ...
Cardiac excitation-contraction coupling (Cardiac EC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. [1] This process is of vital importance as it allows for the heart to beat in a controlled manner, without the need for conscious input.
Consequently, this initial phase of ventricular systole is known as isovolumic contraction, also called isovolumetric contraction. [1] In the second phase of ventricular systole, the ventricular ejection phase, the contraction of the ventricular muscle has raised the pressure within the ventricle to the point that it is greater than the ...