enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar absorption coefficient - Wikipedia

    en.wikipedia.org/wiki/Molar_absorption_coefficient

    c is the molar concentration of those species; ℓ is the path length. Different disciplines have different conventions as to whether absorbance is decadic (10-based) or Napierian (e-based), i.e., defined with respect to the transmission via common logarithm (log 10) or a natural logarithm (ln). The molar absorption coefficient is usually decadic.

  3. Absorbance - Wikipedia

    en.wikipedia.org/wiki/Absorbance

    Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". [1] Alternatively, for samples which scatter light, absorbance may be defined as "the negative logarithm of one minus absorptance, as measured on a uniform sample". [2]

  4. Standard solution - Wikipedia

    en.wikipedia.org/wiki/Standard_solution

    For example, by comparing the absorbance values of a solution with an unknown concentration to a series of standard solutions with varying concentrations, the concentration of the unknown can be determined using Beer's Law. Any form of spectroscopy can be used in this way so long as the analyte species has substantial absorbance in the spectra ...

  5. Variable pathlength cell - Wikipedia

    en.wikipedia.org/wiki/Variable_pathlength_cell

    Variable pathlength absorption spectroscopy uses a determined slope to calculate concentration. As stated above this is a product of the molar absorptivity and the concentration. Since the actual absorbance value is taken at many data points at equal intervals, background subtraction is generally unnecessary.

  6. Beer–Lambert law - Wikipedia

    en.wikipedia.org/wiki/Beer–Lambert_law

    Absorbance within range of 0.2 to 0.5 is ideal to maintain linearity in the Beer–Lambert law. If the radiation is especially intense, nonlinear optical processes can also cause variances. The main reason, however, is that the concentration dependence is in general non-linear and Beer's law is valid only under certain conditions as shown by ...

  7. Absorption spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Absorption_spectroscopy

    An absorption spectrum can be quantitatively related to the amount of material present using the Beer–Lambert law. Determining the absolute concentration of a compound requires knowledge of the compound's absorption coefficient. The absorption coefficient for some compounds is available from reference sources, and it can also be determined by ...

  8. Extinction coefficient - Wikipedia

    en.wikipedia.org/wiki/Extinction_coefficient

    Molar extinction coefficient, how strongly a substance absorbs light at a given wavelength, per molar concentration; Optical extinction coefficient, ...

  9. Nucleic acid quantitation - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_quantitation

    The secondary benefit of using spectrophotometric analysis for nucleic acid quantitation is the ability to determine sample purity using the 260 nm:280 nm calculation. The ratio of the absorbance at 260 and 280 nm (A 260/280 ) is used to assess the purity of nucleic acids.