Search results
Results from the WOW.Com Content Network
13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...
B will denote the best solution found so far, and will be used as an upper bound on candidate solutions. Initialize a queue to hold a partial solution with none of the variables of the problem assigned. Loop until the queue is empty: Take a node N off the queue. If N represents a single candidate solution x and f(x) < B, then x is the best ...
When the portfolio crosses above the upper or below the lower boundary, one should rebalance the portfolio to bring it back to that boundary. In 1994 Shreve and Soner provided an analysis of the problem via the Hamilton–Jacobi–Bellman equation and its viscosity solutions. [7]
A real set with upper bounds and its supremum. A set S of real numbers is called bounded from above if there exists some real number k (not necessarily in S) such that k ≥ s for all s in S. The number k is called an upper bound of S. The terms bounded from below and lower bound are similarly defined. A set S is bounded if it
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
This application was the motivation for Paul Erdős to find his solution for the no-three-in-line problem. [13] It remained the best area lower bound known for the Heilbronn triangle problem from 1951 until 1982, when it was improved by a logarithmic factor using a construction that was not based on the no-three-in-line problem. [14]
In general, the upper and lower approximations are not equal; in such cases, we say that target set is undefinable or roughly definable on attribute set . When the upper and lower approximations are equal (i.e., the boundary is empty), P ¯ X = P _ X {\displaystyle {\overline {P}}X={\underline {P}}X} , then the target set X {\displaystyle X} is ...