Search results
Results from the WOW.Com Content Network
Pulse-Doppler systems measure the range to objects by measuring the elapsed time between sending a pulse of radio energy and receiving a reflection of the object. Radio waves travel at the speed of light , so the distance to the object is the elapsed time multiplied by the speed of light, divided by two – there and back.
Pulse-Doppler signal processing separates reflected signals into a number of frequency filters. There is a separate set of filters for each ambiguous range. The I and Q samples described above are used to begin the filtering process. These samples are organized into the m × n matrix of time domain samples shown in the top half of the diagram.
The Range-Doppler algorithm is an example of a more recent approach. ... One is the lexicographic covariance matrix approach based on physically ... Because the real ...
When the PRF of the "jamming" radar is very similar to "our" radar, those apparent distances may be very slow-changing, just like real targets. By using stagger, a radar designer can force the "jamming" to jump around erratically in apparent range, inhibiting integration and reducing or even suppressing its impact on true target detection.
SISO range Doppler imaging results comparison with three 5 dB and six 25 dB targets. (a) ground truth, (b) matched filter (MF), (c) IAA algorithm, (d) SAMV-0 algorithm. All power levels are in dB. Both MF and IAA methods are limited in resolution with respect to the doppler axis. SAMV-0 offers superior resolution in terms of both range and ...
The range and velocity of a target are detected through pulse delay ranging and the Doppler effect (pulse-Doppler), or through the frequency modulation (FM) ranging and range differentiation. The range resolution is limited by the instantaneous signal bandwidth of the radar sensor in both pulse-Doppler and frequency modulated continuous wave ...
Other difficulties arise when the interference covariance matrix is ill-conditioned, making the inversion numerically unstable. [5] In general, this adaptive filtering must be performed for each of the unambiguous range bins in the system, for each target of interest (angle-Doppler coordinates), making for a massive computational burden. [4]
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .