Search results
Results from the WOW.Com Content Network
Beginning in the sympathetic nervous system, an external stimulus affects the adrenal medulla and causes a release of catecholamines. The sympathoadrenal system is a physiological connection between the sympathetic nervous system and the adrenal medulla and is crucial in an organism's physiological response to outside stimuli. [1]
This response is also known as sympatho-adrenal response of the body, as the preganglionic sympathetic fibers that end in the adrenal medulla (but also all other sympathetic fibers) secrete acetylcholine, which activates the great secretion of adrenaline (epinephrine) and to a lesser extent noradrenaline (norepinephrine) from it.
The adrenal medulla is the principal site of the conversion of the amino acid tyrosine into the catecholamines; epinephrine, norepinephrine, and dopamine. Because the ANS, specifically the sympathetic division, exerts direct control over the chromaffin cells , the hormone release can occur rather quickly. [ 2 ]
The adrenal medulla is driven by the sympathetic nervous system via preganglionic fibers originating in the thoracic spinal cord, from vertebrae T5–T11. [20] Because it is innervated by preganglionic nerve fibers, the adrenal medulla can be considered as a specialized sympathetic ganglion. [20]
An example of a neuroendocrine cell is a cell of the adrenal medulla (innermost part of the adrenal gland), which releases adrenaline to the blood. The adrenal medullary cells are controlled by the sympathetic division of the autonomic nervous system. These cells are modified postganglionic neurons. Autonomic nerve fibers lead directly to them ...
Chromaffin cells (or pheochromocytes): These cells will migrate to the area adjacent to the sympathetic ganglia (hence the name paraganglia) and to the adrenal medulla where they will be the most abundant type of cells. The largest extra-adrenal cluster of chromaffin cells in mammals is the organ of Zuckerkandl. [4]
Adrenomedullary hormones are catecholamines secreted from the adrenal medulla by chromaffin cells, neurosecretory cells connected to the central nervous system. [10] The synthesis, storage (in chromaffin cells) and release of catecholamines is co-regulated by synaptic input from their respective pre-synaptic sympathetic neurons, as well as ...
The α 2-adrenergic receptor binds both norepinephrine released by sympathetic postganglionic fibers and epinephrine (adrenaline) released by the adrenal medulla, binding norepinephrine with slightly higher affinity. [4] It has several general functions in common with the α 1-adrenergic receptor, but also has specific effects of its own.