enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis refers to a family of algorithms and tasks rather than one ...

  4. Document clustering - Wikipedia

    en.wikipedia.org/wiki/Document_clustering

    Hard clustering computes a hard assignment – each document is a member of exactly one cluster. The assignment of soft clustering algorithms is soft – a document's assignment is a distribution over all clusters. In a soft assignment, a document has fractional membership in several clusters. [1]: 499 Dimensionality reduction methods can be ...

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    In statistics, cluster analysis is the algorithmic grouping of objects into homogeneous groups based on numerical measurements. Model-based clustering [1] based on a statistical model for the data, usually a mixture model.

  6. Davies–Bouldin index - Wikipedia

    en.wikipedia.org/wiki/Davies–Bouldin_index

    The starting point for this new version of the validation index is the result of a given soft clustering algorithm (e.g. fuzzy c-means), shaped with the computed clustering partitions and membership values associating the elements with the clusters. In the soft domain, each element of the system belongs to every classes, given the membership ...

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/.../Automatic_Clustering_Algorithms

    Unlike partitioning and hierarchical methods, density-based clustering algorithms are able to find clusters of any arbitrary shape, not only spheres. The density-based clustering algorithm uses autonomous machine learning that identifies patterns regarding geographical location and distance to a particular number of neighbors.

  8. The 3 Most Overpriced Cities in America, According to Gen Z ...

    www.aol.com/finance/3-most-overpriced-cities...

    It’s a cost that’s hard to ignore. More From GOBankingRates. Barbara Corcoran: If Mortgage Rates Hit This Number, the Market Will "Go Ballistic"

  9. Adjusted mutual information - Wikipedia

    en.wikipedia.org/wiki/Adjusted_mutual_information

    In probability theory and information theory, adjusted mutual information, a variation of mutual information may be used for comparing clusterings. [1] It corrects the effect of agreement solely due to chance between clusterings, similar to the way the adjusted rand index corrects the Rand index.