Search results
Results from the WOW.Com Content Network
For a primitive () th root x, the number () / is a primitive th root of unity. If k does not divide λ ( n ) {\displaystyle \lambda (n)} , then there will be no k th roots of unity, at all. Finding multiple primitive k th roots modulo n
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo p n (that is, the group of units of the ring Z/p n Z) is cyclic. [ 1 ] The number of elements of a finite field is always a prime power and conversely, every prime power occurs as the number of elements in some finite ...
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [ 1 ] In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n .
Safe primes ending in 7, that is, of the form 10n + 7, are the last terms in such chains when they occur, since 2(10n + 7) + 1 = 20n + 15 is divisible by 5. For a safe prime, every quadratic nonresidue, except -1 (if nonresidue [a]), is a primitive root. It follows that for a safe prime, the least positive primitive root is a prime number. [15]
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
The set {3,19} generates the group, which means that every element of (/) is of the form 3 a × 19 b (where a is 0, 1, 2, or 3, because the element 3 has order 4, and similarly b is 0 or 1, because the element 19 has order 2). Smallest primitive root mod n are (0 if no root exists)