Search results
Results from the WOW.Com Content Network
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
K-epsilon (k-ε) turbulence model is one of the most common models used in computational fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two equation model that gives a general description of turbulence by means of two transport equations ( partial differential equations , PDEs).
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
fluid mechanics, geology (ratio of grain collision stresses to viscous fluid stresses in flow of a granular material such as grain and sand) [7] Bejan number (fluid mechanics) Be = fluid mechanics (dimensionless pressure drop along a channel) [8] Bejan number (thermodynamics) Be
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s , e.g. water.
Pressure and temperature sensors providing pulses can be used to determine mass flow, with division of the pulses by the K-factor, or multiplication with the inverse of the K-factor providing factored totalization, and rate indication. Furthermore, by dividing the pulse rate by the K-Factor, the volumetric throughput per unit time of the rate ...
In computational fluid dynamics (CFD), it is impossible to numerically simulate turbulence without discretizing the flow-field as far as the Kolmogorov microscales, which is called direct numerical simulation (DNS). Because DNS simulations are exorbitantly expensive due to memory, computational and storage overheads, turbulence models are used ...