Search results
Results from the WOW.Com Content Network
The K factor or characterization factor is defined from Rankine boiling temperature °R=1.8Tb[k] and relative to water density ρ at 60°F: . K(UOP) = / The K factor is a systematic way of classifying a crude oil according to its paraffinic, naphthenic, intermediate or aromatic nature. 12.5 or higher indicate a crude oil of predominantly paraffinic constituents, while 10 or lower indicate a ...
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
Before choosing a formula it is worth knowing that in the paper on the Moody chart, Moody stated the accuracy is about ±5% for smooth pipes and ±10% for rough pipes. If more than one formula is applicable in the flow regime under consideration, the choice of formula may be influenced by one or more of the following: Required accuracy
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
where k is the reduced frequency, and A is amplitude of the heaving oscillation. Strouhal number (Sr) as a function of the Reynolds number (R) for the flow past a long circular cylinder. For large Strouhal numbers (order of 1), viscosity dominates fluid flow, resulting in a collective oscillating movement of the fluid "plug".
K-factor (aeronautics), the number of pulses expected for every one volumetric unit of fluid passing through a given flow meter; K-factor (centrifugation), relative pelleting efficiency of a given centrifuge rotor; K factor (crude oil refining), a system for classifying crude oil; K-factor (fire protection), formula used to calculate the ...
In fluid mechanics, materials science and Earth sciences, permeability (commonly symbolized as k) is a measure of the ability of a porous material (often, a rock or an unconsolidated material) to allow fluids to pass through it. Symbol used to represent in situ permeability tests in geotechnical drawings
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]