enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    Potential energy is the energy by virtue of an object's position relative to other objects. [6] Potential energy is often associated with restoring forces such as a spring or the force of gravity. The action of stretching a spring or lifting a mass is performed by an external force that works against the force field of the potential.

  4. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

  5. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The potential energy within a spring is determined by the equation =. When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic ...

  6. Effective mass (spring–mass system) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(spring...

    Comparing to the expected original kinetic energy formula , the effective mass of spring in this case is . This result is known as Rayleigh's value, after Lord Rayleigh. To find the gravitational potential energy of the spring, one follows a similar procedure:

  7. Elastic pendulum - Wikipedia

    en.wikipedia.org/wiki/Elastic_pendulum

    where is the kinetic energy and is the potential energy. Hooke's law is the potential energy of the spring itself: = where is the spring constant. The potential energy from gravity, on the other hand, is determined by the height of the mass. For a given angle and displacement, the potential energy is:

  8. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    In classical physics, a spring can be seen as a device that stores potential energy, specifically elastic potential energy, by straining the bonds between the atoms of an elastic material. Hooke's law of elasticity states that the extension of an elastic rod (its distended length minus its relaxed length) is linearly proportional to its tension ...

  9. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    The potential energy of the system is: = (⁡ ⁡) + () where g {\displaystyle g} is the gravitational acceleration , and k {\displaystyle k} is the spring constant . The displacement L ( θ 2 − θ 1 ) {\displaystyle L(\theta _{2}-\theta _{1})} of the spring from its equilibrium position assumes the small angle approximation .