Search results
Results from the WOW.Com Content Network
In propositional logic, disjunction elimination [1] [2] (sometimes named proof by cases, case analysis, or or elimination) is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof.
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts .
In Disjunctive Syllogism, the first premise establishes two options. The second takes one away, so the conclusion states that the remaining one must be true. [3] It is shown below in logical form. Either A or B Not A Therefore B. When A and B are replaced with real life examples it looks like below.
This is because in the structure of the syllogism invoked (i.e. III-1) the middle term is not distributed in either the major premise or in the minor premise, a pattern called the "fallacy of the undistributed middle". Because of this, it can be hard to follow formal logic, and a closer eye is needed in order to ensure that an argument is, in ...
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.
Constructive dilemma [1] [2] [3] is a valid rule of inference of propositional logic.It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true.
In either case, a statement is viewed as a truth bearer. Examples of sentences that are (or make) true statements: "Socrates is a man." "A triangle has three sides." "Madrid is the capital of Spain." Examples of sentences that are also statements, even though they aren't true: "All toasters are made of solid gold." "Two plus two equals five."
Syllogistic fallacies – logical fallacies that occur in syllogisms. Affirmative conclusion from a negative premise (illicit negative) – a categorical syllogism has a positive conclusion, but at least one negative premise. [11] Fallacy of exclusive premises – a categorical syllogism that is invalid because both of its premises are negative ...