enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Figure 8 shows the gain plot. From Figure 8, the intersection of 1 / β and A OL occurs at f 0 dB = 1 kHz. Notice that the peak in the gain A FB near f 0 dB is almost gone. [note 2] [9] Figure 9 is the phase plot. Using the value of f 0 dB = 1 kHz found above from the magnitude plot of Figure 8, the open-loop phase at f 0 dB is −135°, which ...

  3. Nichols plot - Wikipedia

    en.wikipedia.org/wiki/Nichols_plot

    A Nichols plot. The Nichols plot is a plot used in signal processing and control design, named after American engineer Nathaniel B. Nichols. [1] [2] [3] It plots the phase response versus the response magnitude of a transfer function for any given frequency, and as such is useful in characterizing a system's frequency response.

  4. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    Derivative Accuracy −5 −4 −3 −21 0 1 2 3 4 5 1 21/2: 0: 1/2: 4 1/12: −2/3: 0: 2/3: −1/12: 6 −1/60: 3/20: −3/4: 0: 3/4: −3/20: 1/60: 8 1/280 ...

  5. Okumura model - Wikipedia

    en.wikipedia.org/wiki/Okumura_Model

    These curves were developed from extensive measurements using vertical omni-directional antennas at both the base and mobile, and are plotted as a function of frequency in the range 100–1920 MHz and as a function of distance from the base station in the range 1–100 km. To determine path loss using Okumura's model, the free space path loss ...

  6. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    A difference in OPL between two paths is often called the optical path difference (OPD). OPL and OPD are important because they determine the phase of the light and govern interference and diffraction of light as it propagates. In a medium of constant refractive index, n, the OPL for a path of geometrical length s is just

  7. Free-space path loss - Wikipedia

    en.wikipedia.org/wiki/Free-space_path_loss

    In telecommunications, the free-space path loss (FSPL) (also known as free-space loss, FSL) is the attenuation of radio energy between the feedpoints of two antennas that results from the combination of the receiving antenna's capture area plus the obstacle-free, line-of-sight (LoS) path through free space (usually air). [1]

  8. Smith chart - Wikipedia

    en.wikipedia.org/wiki/Smith_chart

    Therefore, transformations P 1 to Q 1 and P 3 to Q 3 are from the Z Smith chart to the Y Smith chart and transformation Q 2 to P 2 is from the Y Smith chart to the Z Smith chart. The following table shows the steps taken to work through the remaining components and transformations, returning eventually back to the centre of the Smith chart and ...

  9. COST Hata model - Wikipedia

    en.wikipedia.org/wiki/COST_Hata_model

    It is the most often cited of the COST 231 models (EU funded research project ca. April 1986 – April 1996), [1] also called the Hata Model PCS Extension. This model is the combination of empirical and deterministic models for estimating path loss in an urban area over frequency range of 800 MHz to 2000 MHz.