Search results
Results from the WOW.Com Content Network
The second pattern of potentially globally redundant proofs appearing in global redundancy definition is related to the well-known [further explanation needed] notion of regularity [further explanation needed]. Informally, a proof is irregular if there is a path from a node to the root of the proof such that a literal is used more than once as ...
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).
But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the ...
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
A rule in natural deduction that allows for the introduction of negation into a proof, typically by deriving a contradiction from the assumption that the negation is false. negation normal form A way of expressing logical formulas where negation is only applied directly to atomic propositions, and the only other allowed connectives are ...
The resolution rule in propositional logic is a single valid inference rule that produces a new clause implied by two clauses containing complementary literals. A literal is a propositional variable or the negation of a propositional variable.
Dedekind's work, however, proved theorems inaccessible in Peano's system, including the uniqueness of the set of natural numbers (up to isomorphism) and the recursive definitions of addition and multiplication from the successor function and mathematical induction. In the mid-19th century, flaws in Euclid's axioms for geometry became known. [12]
Used to describe a geometrical proof that involves finding relationships between the various angles in a diagram. [3] back-of-the-envelope calculation An informal computation omitting much rigor without sacrificing correctness. Often this computation is "proof of concept" and treats only an accessible special case. brute force