enow.com Web Search

  1. Ads

    related to: convex polygon formula math problems

Search results

  1. Results from the WOW.Com Content Network
  2. Convex polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_polygon

    An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]

  3. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    For two convex polygons P and Q in the plane with m and n vertices, their Minkowski sum is a convex polygon with at most m + n vertices and may be computed in time O(m + n) by a very simple procedure, which may be informally described as follows. Assume that the edges of a polygon are given and the direction, say, counterclockwise, along the ...

  4. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  5. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    The minimum number n of pieces required to compose one polygon Q from another polygon P is denoted by σ(P,Q). Depending on the polygons, it is possible to estimate upper and lower bounds for σ(P,Q). For instance, Alfred Tarski proved that if P is convex and the diameters of P and Q are respectively given by d(P) and d(Q), then [3]

  6. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.

  7. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    In geometry, an angle of a polygon is formed by two adjacent sides. For a simple polygon (non-self-intersecting), regardless of whether it is convex or non-convex, this angle is called an internal angle (or interior angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex.

  8. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    A point-set triangulation is a polygon triangulation of the convex hull of a set of points. A Delaunay triangulation is another way to create a triangulation based on a set of points. The associahedron is a polytope whose vertices correspond to the triangulations of a convex polygon. Polygon triangle covering, in which the triangles may overlap.

  9. Happy ending problem - Wikipedia

    en.wikipedia.org/wiki/Happy_ending_problem

    The happy ending problem: every set of five points in general position contains the vertices of a convex quadrilateral In mathematics , the " happy ending problem " (so named by Paul Erdős because it led to the marriage of George Szekeres and Esther Klein [ 1 ] ) is the following statement:

  1. Ads

    related to: convex polygon formula math problems