Search results
Results from the WOW.Com Content Network
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Many communication channels are not memoryless: errors typically occur in bursts rather than independently. If the number of errors within a code word exceeds the error-correcting code's capability, it fails to recover the original code word.
A memoryless source is one in which each message is an independent identically distributed random variable, whereas the properties of ergodicity and stationarity impose less restrictive constraints. All such sources are stochastic. These terms are well studied in their own right outside information theory.
This is a known characteristic of the exponential distribution, i.e., its memoryless property. Intuitively, this means that it does not matter how long it has been since the last renewal epoch, the remaining time is still probabilistically the same as in the beginning of the holding time interval.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
M stands for "Markov" or "memoryless", and means arrivals occur according to a Poisson process; D stands for "deterministic", and means jobs arriving at the queue require a fixed amount of service; k describes the number of servers at the queueing node (k = 1, 2, 3, ...) If the node has more jobs than servers, then jobs will queue and wait for ...