Search results
Results from the WOW.Com Content Network
In mathematical logic, a sentence (or closed formula) [1] of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition , something that must be true or false.
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
In mathematical logic, a set of logical formulae is deductively closed if it contains every formula that can be logically deduced from , formally: if always implies .
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence φ , {\displaystyle \varphi ,} the theory T {\displaystyle T} contains the sentence or its negation but not both (that is, either T ⊢ φ ...
For example, the existential closure of the open formula n>2 ∧ x n +y n =z n is the closed formula ∃n ∃x ∃y ∃z (n>2 ∧ x n +y n =z n); the latter formula, when interpreted over the positive integers, is known to be false by Fermat's Last Theorem.
The deduction theorem for predicate logic is similar, but comes with some extra constraints (that would for example be satisfied if is a closed formula). In general a deduction theorem needs to take into account all logical details of the theory under consideration, so each logical system technically needs its own deduction theorem, although ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The theory of real closed fields is the theory in which the primitive operations are multiplication and addition; this implies that, in this theory, the only numbers that can be defined are the real algebraic numbers. As proven by Tarski, this theory is decidable; see Tarski–Seidenberg theorem and Quantifier elimination.