enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial derivative - Wikipedia

    en.wikipedia.org/wiki/Partial_derivative

    If all the partial derivatives of a function are known (for example, with the gradient), then the antiderivatives can be matched via the above process to reconstruct the original function up to a constant. Unlike in the single-variable case, however, not every set of functions can be the set of all (first) partial derivatives of a single function.

  3. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Both of these classical methods have problems with calculating higher derivatives, where complexity and errors increase. Finally, both of these classical methods are slow at computing partial derivatives of a function with respect to many inputs, as is needed for gradient-based optimization algorithms. Automatic differentiation solves all of ...

  4. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.

  5. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The first partial derivatives of the delta function are thought of as double layers along the coordinate planes. More generally, the normal derivative of a simple layer supported on a surface is a double layer supported on that surface and represents a laminar magnetic monopole.

  6. Antiderivative (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Antiderivative_(complex...

    While it is possible for a discontinuous real function to have an anti-derivative, anti-derivatives can fail to exist even for holomorphic functions of a complex variable. For example, consider the reciprocal function, g(z) = 1/z which is holomorphic on the punctured plane C\{0}.

  7. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    In many practical partial differential equations, one has a term that involves derivatives (such as a kinetic energy contribution), and a multiplication with a function (for example, a potential). In the spectral method, the solution ψ {\displaystyle \psi } is expanded in a suitable set of basis functions, for example plane waves,

  8. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.

  9. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an ...