Search results
Results from the WOW.Com Content Network
The convolution of two finite sequences is defined by extending the sequences to finitely supported functions on the set of integers. When the sequences are the coefficients of two polynomials, then the coefficients of the ordinary product of the two polynomials are the convolution of the original two
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
This vector length is equivalent to the dimensions of the original matrix output , making converting back to a matrix a direct transformation. Thus, the vector, ″, is converted back to matrix form, which produces the output of the two-dimensional discrete convolution. [14]
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about N (log 2 (N) + 1) complex multiplications for the FFT, product of arrays, and IFFT. [ B ] Each iteration produces N-M+1 output samples, so the number of complex multiplications per output sample is about :
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).