enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. External memory graph traversal - Wikipedia

    en.wikipedia.org/.../External_memory_graph_traversal

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    It is also possible to use depth-first search to linearly order the vertices of a graph or tree. There are four possible ways of doing this: A preordering is a list of the vertices in the order that they were first visited by the depth-first search algorithm. This is a compact and natural way of describing the progress of the search, as was ...

  4. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    The main operation performed by the adjacency list data structure is to report a list of the neighbors of a given vertex. Using any of the implementations detailed above, this can be performed in constant time per neighbor. In other words, the total time to report all of the neighbors of a vertex v is proportional to the degree of v.

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  6. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  7. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    Adjacency list [2] Vertices are stored as records or objects, and every vertex stores a list of adjacent vertices. This data structure allows the storage of additional data on the vertices. Additional data can be stored if edges are also stored as objects, in which case each vertex stores its incident edges and each edge stores its incident ...

  8. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    Sort the edge list lexicographically. (Here we assume that the nodes of the tree are ordered, and that the root is the first element in this order.) Construct adjacency lists for each node (called next) and a map from nodes to the first entries of the adjacency lists (called first): For each edge (u,v) in the list, do in parallel:

  9. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):