Search results
Results from the WOW.Com Content Network
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
Ultrasound image showing the liver, gallbladder and common bile duct. Medical ultrasound uses high frequency broadband sound waves in the megahertz range that are reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however.
The reflected ultrasound is received by the probe, transformed into an electric impulse as voltage, and sent to the engine for signal processing and conversion to an image on the screen. The depth reached by the ultrasound beam is dependent on the frequency of the probe used. The higher the frequency, the lesser the depth reached. [9]
The inability to compress the vein is one of the more reliable indications of venous thrombosis. There is a simplified technique called "compression ultrasonography" which can be used for quick DVT diagnosis, mainly for the common femoral vein and the popliteal vein.
The sign is an imaging finding using a 3.5–7.5 MHz ultrasound probe in the fourth and fifth intercostal spaces in the anterior clavicular line using the M-Mode of the machine. This finding is seen in the M-mode tracing as pleura and lung being indistinguishable as linear hyperechogenic lines and is fairly reliable for diagnosis of a pneumothorax.
Ultrasound duplex scanning can provide additional information that may guide therapeutic decisions. The location and severity of arterial narrowings and occlusions can be identified. The vascular sonographer can map disease in lower-extremity segments with great accuracy, though duplex scanning is more time-consuming than other lower-extremity ...
An ultrasound research interface (URI) is a software tool loaded onto a diagnostic clinical ultrasound device which provides functionality beyond typical clinical modes of operation. A normal clinical ultrasound user only has access to the ultrasound data in its final processed form, typically a B-Mode image, in DICOM format. For reasons of ...