Search results
Results from the WOW.Com Content Network
To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.
A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [ 1 ]
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
In a finite difference formulation, the spatial oscillations are reduced by a family of discretization schemes like upwind scheme. [5] In this method, the basic shape function is modified to obtain the upwinding effect. This method is an extension of Runge–Kutta discontinuous for a convection-diffusion equation. For time-dependent equations ...
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !
Multigrid methods (MG methods), a group of algorithms for solving differential equations using a hierarchy of discretizations; Partial differential equation: Finite difference method; Crank–Nicolson method for diffusion equations; Lax–Wendroff for wave equations; Verlet integration (French pronunciation:): integrate Newton's equations of motion
Finite-difference frequency-domain (FDFD) provides a rigorous solution to Maxwell’s equations in the frequency-domain using the finite-difference method. [13] FDFD is arguably the simplest numerical method that still provides a rigorous solution. It is incredibly versatile and able to solve virtually any problem in electromagnetics.