Search results
Results from the WOW.Com Content Network
[1] [2] The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if ...
Chebyshev's sum inequality, about sums and products of decreasing sequences Chebyshev's equioscillation theorem , on the approximation of continuous functions with polynomials The statement that if the function π ( x ) ln x / x {\textstyle \pi (x)\ln x/x} has a limit at infinity, then the limit is 1 (where π is the prime-counting function).
the most common choice for function h being either the absolute value (in which case it is known as Markov inequality), or the quadratic function (respectively Chebyshev's inequality). Another useful result is the continuous mapping theorem : if T n is consistent for θ and g (·) is a real-valued function continuous at point θ , then g ( T n ...
The case for squares, k = 2, was answered by Lagrange in 1770, who proved that every positive integer is the sum of at most four squares. The general case was proved by Hilbert in 1909, using algebraic techniques which gave no explicit bounds. An important breakthrough was the application of analytic tools to the problem by Hardy and Littlewood.