Search results
Results from the WOW.Com Content Network
The simplest of these is called elliptic geometry and it is considered a non-Euclidean geometry due to its lack of parallel lines. [12] By formulating the geometry in terms of a curvature tensor, Riemann allowed non-Euclidean geometry to apply to higher dimensions. Beltrami (1868) was the first to apply Riemann's geometry to spaces of negative ...
Euclidean geometry is an axiomatic system, in which all theorems ("true statements") are derived from a small number of simple axioms. Until the advent of non-Euclidean geometry, these axioms were considered to be obviously true in the physical world, so that all the theorems would be equally true. However, Euclid's reasoning from assumptions ...
A geometry where the parallel postulate does not hold is known as a non-Euclidean geometry. Geometry that is independent of Euclid's fifth postulate (i.e., only assumes the modern equivalent of the first four postulates) is known as absolute geometry (or sometimes "neutral geometry").
Consequently, hyperbolic geometry has been called Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. Gauss mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before, [ 64 ] though he did not publish.
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric ...
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their ...
A Euclidean model of a non-Euclidean geometry is a choice of some objects existing in Euclidean space and some relations between these objects that satisfy all axioms (and therefore, all theorems) of the non-Euclidean geometry. These Euclidean objects and relations "play" the non-Euclidean geometry like contemporary actors playing an ancient ...
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .