enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the divergence of the gradient (). Thus if f {\displaystyle f} is a twice-differentiable real-valued function , then the Laplacian of f {\displaystyle f} is the real-valued function defined by:

  3. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  4. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  5. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    Verbally, the second version is the second derivative in the direction of the gradient. In the case of the infinity Laplace equation Δ ∞ u = 0 {\displaystyle \Delta _{\infty }u=0} , the two definitions are equivalent.

  6. p-Laplacian - Wikipedia

    en.wikipedia.org/wiki/P-Laplacian

    In mathematics, the p-Laplacian, or the p-Laplace operator, is a quasilinear elliptic partial differential operator of 2nd order. It is a nonlinear generalization of the Laplace operator , where p {\displaystyle p} is allowed to range over 1 < p < ∞ {\displaystyle 1<p<\infty } .

  7. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    This just means that for a given section s of E, the value of P(s) at a point x ∈ M is fully determined by the kth-order infinitesimal behavior of s in x. In particular this implies that P ( s )( x ) is determined by the germ of s in x , which is expressed by saying that differential operators are local.

  8. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    For any twice-differentiable real-valued function f defined on Euclidean space R n, the Laplace operator (also known as the Laplacian) takes f to the divergence of its gradient vector field, which is the sum of the n pure second derivatives of f with respect to each vector of an orthonormal basis for R n.

  9. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,