Search results
Results from the WOW.Com Content Network
The equation of the ellipse yields an eccentricity of 0.0549 and perigee and apogee distances of 362,600 km (225,300 mi) and 405,400 km (251,900 mi) respectively (a difference of 12%). [citation needed] Since nearer objects appear larger, the Moon's apparent size changes as it moves toward and away from an observer on Earth.
If the argument of perigee is zero, meaning that perigee and apogee lie in the equatorial plane, then the ground track of the satellite will appear the same above and below the equator (i.e., it will exhibit 180° rotational symmetry about the orbital nodes.) If the argument of perigee is non-zero, however, the satellite will behave differently ...
The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.
r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse. r p is the radius at periapsis (or "perifocus" etc.), the closest distance.
Extra fuel is required to compensate for the fact that the bursts take time; this is minimized by using high-thrust engines to minimize the duration of the bursts. For transfers in Earth orbit, the two burns are labelled the perigee burn and the apogee burn (or apogee kick [5]); more generally, they are labelled periapsis and apoapsis burns.
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
This shows that the smallest perigee occurs at either new moon or full moon (ca 356870 km), as does the greatest apogee (ca 406079 km), whereas the greatest perigee will be around half-moon (ca 370180 km), as will be the smallest apogee (ca 404593 km). The exact values will be slightly different due to other terms.
A notable success was achieved by Jeremiah Horrocks, who proposed a scheme involving an approximate 6 monthly libration in the position of the lunar apogee and also in the size of the elliptical eccentricity. This scheme had the great merit of giving a more realistic description of the changes in distance, diameter and parallax of the Moon.