Search results
Results from the WOW.Com Content Network
In electrical engineering, Neher–McGrath is a method of estimating the steady-state temperature of electrical power cables for some commonly encountered configurations. By estimating the temperature of the cables, the safe long-term current-carrying capacity of the cables can be calculated.
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...
Conductors installed so that air can freely move over them can be rated to carry more current than conductors run inside a conduit or buried underground. High ambient temperature may reduce the current rating of a conductor. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. A lower rating will ...
A Rogowski coil is a toroid of wire used to measure an alternating current I(t) through a cable encircled by the toroid. The picture shows a Rogowski coil encircling a current-carrying cable. The output of the coil, v(t), is connected to a lossy integrator circuit to obtain a voltage V out (t) that is proportional to I(t).
Voltage drop is usually the main factor considered, but current-carrying capacity is as important when considering short, high-current runs such as between a battery bank and inverter. Arcing is a risk in DC ELV systems, and some fuse types which can cause undesired arcing include semi-enclosed, rewireable and automotive fuse types.
A submarine power cable is a transmission cable for carrying electric power below the surface of the water. [1] These are called "submarine" because they usually carry electric power beneath salt water (arms of the ocean , seas , straits , etc.) but it is also possible to use submarine power cables beneath fresh water (large lakes and rivers ).
Conductor sizes range from 12 mm 2 (#6 American wire gauge) to 750 mm 2 (1,590,000 circular mils area), with varying resistance and current-carrying capacity. For large conductors (more than a few centimetres in diameter), much of the current flow is concentrated near the surface due to the skin effect. The center of the conductor carries ...
If the load is evenly split across the two directions, the current in each direction is half of the total, allowing the use of wire with half the current-carrying capacity. In practice, it is impossible to ensure the load does split evenly, so regulations require a thicker wire, of at least 2/3 the current capacity of the fuse or circuit breaker.