Search results
Results from the WOW.Com Content Network
Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize in implementations. Tail calls can be implemented without adding a new stack frame to the call stack . Most of the frame of the current procedure is no longer needed, and can be replaced by the frame of the tail call, modified as appropriate (similar to ...
The significance of tail recursion is that when making a tail-recursive call (or any tail call), the caller's return position need not be saved on the call stack; when the recursive call returns, it will branch directly on the previously saved return position. Therefore, in languages that recognize this property of tail calls, tail recursion ...
Continuation passing style can be used to implement continuations and control flow operators in a functional language that does not feature first-class continuations but does have first-class functions and tail-call optimization. Without tail-call optimization, techniques such as trampolining, i.e. using a loop that iteratively invokes thunk ...
A simple tail recursive parser can be written much like a recursive descent parser. The typical algorithm for parsing a grammar like this using an abstract syntax tree is: Parse the next level of the grammar and get its output tree, designate it the first tree, F; While there is terminating token, T, that can be put as the parent of this node:
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
As with direct recursion, tail call optimization is necessary if the recursion depth is large or unbounded, such as using mutual recursion for multitasking. Note that tail call optimization in general (when the function called is not the same as the original function, as in tail-recursive calls) may be more difficult to implement than the ...
8 Tail recursion (or tail-end recursion) is particularly useful, and often easy to handle in implementations.