enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tail call - Wikipedia

    en.wikipedia.org/wiki/Tail_call

    If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize in implementations. Tail calls can be implemented without adding a new stack frame to the call stack.

  3. Mutual recursion - Wikipedia

    en.wikipedia.org/wiki/Mutual_recursion

    As with direct recursion, tail call optimization is necessary if the recursion depth is large or unbounded, such as using mutual recursion for multitasking. Note that tail call optimization in general (when the function called is not the same as the original function, as in tail-recursive calls) may be more difficult to implement than the ...

  4. Fold (higher-order function) - Wikipedia

    en.wikipedia.org/wiki/Fold_(higher-order_function)

    Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...

  5. Continuation-passing style - Wikipedia

    en.wikipedia.org/wiki/Continuation-passing_style

    Continuation passing style can be used to implement continuations and control flow operators in a functional language that does not feature first-class continuations but does have first-class functions and tail-call optimization. Without tail-call optimization, techniques such as trampolining, i.e. using a loop that iteratively invokes thunk ...

  6. Tail recursive parser - Wikipedia

    en.wikipedia.org/wiki/Tail_recursive_parser

    A simple tail recursive parser can be written much like a recursive descent parser. The typical algorithm for parsing a grammar like this using an abstract syntax tree is: Parse the next level of the grammar and get its output tree, designate it the first tree, F; While there is terminating token, T, that can be put as the parent of this node:

  7. Recursive data type - Wikipedia

    en.wikipedia.org/wiki/Recursive_data_type

    Data types can also be defined by mutual recursion. The most important basic example of this is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically: f: [t[1], ..., t[k]] t: v f A forest f consists of a list of trees, while a tree t consists of a pair of a value v and a forest f (its children ...

  8. Talk:Tail call - Wikipedia

    en.wikipedia.org/wiki/Talk:Tail_call

    8 Tail recursion (or tail-end recursion) is particularly useful, and often easy to handle in implementations.

  9. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural recursion is usually proved correct by structural induction; in particularly easy cases, the inductive step is often left out. The length and ++ functions in the example below are structurally recursive. For example, if the structures are lists, one usually introduces the partial order "<", in which L < M whenever list L is the tail ...