enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  4. Normalizing constant - Wikipedia

    en.wikipedia.org/wiki/Normalizing_constant

    The Legendre polynomials are characterized by orthogonality with respect to the uniform measure on the interval [−1, 1] and the fact that they are normalized so that their value at 1 is 1. The constant by which one multiplies a polynomial so its value at 1 is a normalizing constant.

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines, logistic regression, and artificial neural networks).

  6. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  7. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...

  8. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    In statistics, quantile normalization is a technique for making two distributions identical in statistical properties. To quantile-normalize a test distribution to a reference distribution of the same length, sort the test distribution and sort the reference distribution.

  9. Normal score - Wikipedia

    en.wikipedia.org/wiki/Normal_score

    The second meaning of normal score is associated with data values derived from the ranks of the observations within the dataset. A given data point is assigned a value which is either exactly, or an approximation, to the expectation of the order statistic of the same rank in a sample of standard normal random variables of the same size as the ...