Search results
Results from the WOW.Com Content Network
The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [34] [35] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...
This algorithm has a few base cases. All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the decision tree saying to choose that class. None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree using the expected value of the class.
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
For these models, an algorithm based on comparison sort solves the problem within a constant factor of the best possible number of comparisons. The same lower bound applies as well to the expected number of comparisons in the randomized algebraic decision tree model. [3] [4]
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.
The worst case decision tree complexity of a given decision tree is the number of variables examined on the longest root-to-leaf path of the tree. Every n {\displaystyle n} -variable function has a decision tree algorithm that examines exactly n {\displaystyle n} variables on all inputs, using a decision tree in which all nodes at level i ...
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.