enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface of constant width - Wikipedia

    en.wikipedia.org/wiki/Surface_of_constant_width

    A sphere, a surface of constant radius and thus diameter, is a surface of constant width. Contrary to common belief the Reuleaux tetrahedron is not a surface of constant width. However, there are two different ways of smoothing subsets of the edges of the Reuleaux tetrahedron to form Meissner tetrahedra, surfaces of constant

  3. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    The first mathematician to discover the existence of curves of constant width, and to observe that the Reuleaux triangle has constant width, may have been Leonhard Euler. [5] In a paper that he presented in 1771 and published in 1781 entitled De curvis triangularibus , Euler studied curvilinear triangles as well as the curves of constant width ...

  4. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. [1]

  5. Barbier's theorem - Wikipedia

    en.wikipedia.org/wiki/Barbier's_theorem

    In particular, the unit sphere has surface area , while the surface of revolution of a Reuleaux triangle with the same constant width has surface area . [ 5 ] Instead, Barbier's theorem generalizes to bodies of constant brightness , three-dimensional convex sets for which every two-dimensional projection has the same area.

  6. Reuleaux tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_tetrahedron

    Bonnesen and Fenchel [4] conjectured that Meissner tetrahedra are the minimum-volume three-dimensional shapes of constant width, a conjecture which is still open. [5] In 2011 Anciaux and Guilfoyle [6] proved that the minimizer must consist of pieces of spheres and tubes over curves, which, being true for the Meissner tetrahedra, supports the conjecture.

  7. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The sphere has constant width and constant girth. The width of a surface is the distance between pairs of parallel tangent planes. Numerous other closed convex surfaces have constant width, for example the Meissner body. The girth of a surface is the circumference of the boundary of its orthogonal projection on to a plane. Each of these ...

  8. Khloé Kardashian Drank an 'Entire Bottle of Vodka,' Wrestled ...

    www.aol.com/khlo-kardashian-drank-entire-bottle...

    On the premiere episode of her new podcast, Khloé Kardashian recalled her "crazy, drunk" wrestling match with Scott Disick during Kim Kardashian and Kanye West's 2014 rehearsal dinner

  9. Blaschke–Lebesgue theorem - Wikipedia

    en.wikipedia.org/wiki/Blaschke–Lebesgue_theorem

    The same theorem is also true in the hyperbolic plane. [11] For any convex distance function on the plane (a distance defined as the norm of the vector difference of points, for any norm), an analogous theorem holds true, according to which the minimum-area curve of constant width is an intersection of three metric disks, each centered on a boundary point of the other two.