enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    Because the stress tensor takes one vector as input and gives one vector as output, it is a second-order tensor. In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...

  3. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  4. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  5. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [8] in the mechanics of curved shells, [6] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [9] [10] and in many other fields.

  6. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    A tensor on the vector space V is then defined to be an element of (i.e., a vector in) a vector space of the form: where V ∗ is the dual space of V. If there are m copies of V and n copies of V ∗ in our product, the tensor is said to be of type ( m , n ) and contravariant of order m and covariant of order n and of total order m + n .

  7. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    However, the stress tensor itself is a physical quantity and as such, it is independent of the coordinate system chosen to represent it. There are certain invariants associated with every tensor which are also independent of the coordinate system. For example, a vector is a simple tensor of rank one. In three dimensions, it has three components.

  8. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: The dot product (a special case of " inner product "), which takes a pair of coordinate vectors as input and produces a scalar

  9. Tensor field - Wikipedia

    en.wikipedia.org/wiki/Tensor_field

    As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a magnitude and a direction, like velocity), a tensor field is a generalization of a scalar field and a vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor A is defined on a vector fields ...