Ads
related to: polynomials practice problems
Search results
Results from the WOW.Com Content Network
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...
This problem arises frequently in practice. In computational geometry, polynomials are used to compute function approximations using Taylor polynomials. In cryptography and hash tables, polynomials are used to compute k-independent hashing. In the former case, polynomials are evaluated using floating-point arithmetic, which is not exact. Thus ...
NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems verifiable in polynomial time by a deterministic Turing machine. The first definition is the basis for the abbreviation NP; "nondeterministic, polynomial time". These two definitions are equivalent because the ...
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
NP-complete problems are problems that any other NP problem is reducible to in polynomial time and whose solution is still verifiable in polynomial time. That is, any NP problem can be transformed into any NP-complete problem. Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard ...
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.
An n-variable instance of 3-SAT can be realized as a positivity problem on a polynomial with n variables and d=4. This proves that positivity testing is NP-Hard . More precisely, assuming the exponential time hypothesis to be true, v ( n , d ) = 2 Ω ( n ) {\displaystyle v(n,d)=2^{\Omega (n)}} .
Ads
related to: polynomials practice problems