enow.com Web Search

  1. Ads

    related to: polynomials practice problems

Search results

  1. Results from the WOW.Com Content Network
  2. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...

  4. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    This problem arises frequently in practice. In computational geometry, polynomials are used to compute function approximations using Taylor polynomials. In cryptography and hash tables, polynomials are used to compute k-independent hashing. In the former case, polynomials are evaluated using floating-point arithmetic, which is not exact. Thus ...

  5. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems verifiable in polynomial time by a deterministic Turing machine. The first definition is the basis for the abbreviation NP; "nondeterministic, polynomial time". These two definitions are equivalent because the ...

  6. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  7. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    NP-complete problems are problems that any other NP problem is reducible to in polynomial time and whose solution is still verifiable in polynomial time. That is, any NP problem can be transformed into any NP-complete problem. Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard ...

  8. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  9. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    An n-variable instance of 3-SAT can be realized as a positivity problem on a polynomial with n variables and d=4. This proves that positivity testing is NP-Hard . More precisely, assuming the exponential time hypothesis to be true, v ( n , d ) = 2 Ω ( n ) {\displaystyle v(n,d)=2^{\Omega (n)}} .

  1. Ads

    related to: polynomials practice problems