Search results
Results from the WOW.Com Content Network
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
delta: change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2) displacement (usually small) meter (m) Dirac delta function: Kronecker delta (e.g ) epsilon: permittivity: farad per meter (F/m) strain: unitless
The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.
Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...
The nabla is a triangular symbol resembling an inverted Greek delta: [1] or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, [2] [3] and was suggested by the encyclopedist William Robertson Smith in an 1870 letter to Peter Guthrie Tait.
The Delta states discussed here are only the lowest-mass quantum excitations of the proton and neutron. At higher spins , additional higher mass Delta states appear, all defined by having constant 3 / 2 or 1 / 2 isospin (depending on charge), but with spin 3 / 2 , 5 / 2 , 7 / 2 , ..., 11 / 2 ...
The generalized Kronecker delta or multi-index Kronecker delta of order is a type (,) tensor that is completely antisymmetric in its upper indices, and also in its lower indices. Two definitions that differ by a factor of p ! {\displaystyle p!} are in use.
The character ∂ (Unicode: U+2202) is a stylized cursive d mainly used as a mathematical symbol, usually to denote a partial derivative such as / (read as "the partial derivative of z with respect to x").