Search results
Results from the WOW.Com Content Network
Acid–base and blood gases are among the few blood constituents that exhibit substantial difference between arterial and venous values. [6] Still, pH, bicarbonate and base excess show a high level of inter-method reliability between arterial and venous tests, so arterial and venous values are roughly equivalent for these. [44]
The anion gap is the quantity difference between cations (positively charged ions) and anions (negatively charged ions) in serum, plasma, or urine. The magnitude of this difference (i.e., "gap") in the serum is calculated to identify metabolic acidosis. If the gap is greater than normal, then high anion gap metabolic acidosis is diagnosed.
For infants and children of age 1 to 12 years, k=0.55. [41] The method of selection of the constant k has been questioned as being dependent upon the gold-standard of renal function used (i.e. inulin clearance, creatinine clearance, etc.) and also may be dependent upon the urinary flow rate at the time of measurement. [44]
The sodium–potassium pump, a critical enzyme for regulating sodium and potassium levels in cells. Sodium ions (Na +) are necessary in small amounts for some types of plants, [1] but sodium as a nutrient is more generally needed in larger amounts [1] by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance.
Potassium is the major cation (K +, a positive ion) inside animal cells, while sodium (Na +) is the major cation outside animal cells.The difference between the concentrations of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential.
Differences in the concentrations of ions giving the membrane potential. There is a significant difference between the concentrations of sodium and potassium ions inside and outside the cell. The concentration of sodium ions is considerably higher in the extracellular fluid than in the intracellular fluid. [23]
Hyperkalemia is an elevated level of potassium (K +) in the blood. [6] [1] Normal potassium levels are between 3.5 and 5.0 mmol/L (3.5 and 5.0 mEq/L) with levels above 5.5 mmol/L defined as hyperkalemia. [3] [4] Typically hyperkalemia does not cause symptoms. [1] Occasionally when severe it can cause palpitations, muscle pain, muscle weakness ...
To maintain electrical neutrality, the solution has a lower level of sodium than that found in blood plasma or normal saline. [4] Generally, the source of the constituent ions is a mixture of sodium chloride (NaCl), sodium lactate (CH 3 CH(OH)CO 2 Na), calcium chloride (CaCl 2), and potassium chloride (KCl), dissolved into distilled water.