Search results
Results from the WOW.Com Content Network
An example of the relationship between sample size and power levels. Higher power requires larger sample sizes. Statistical power may depend on a number of factors. Some factors may be particular to a specific testing situation, but in normal use, power depends on the following three aspects that can be potentially controlled by the practitioner:
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.
Factorial experiments are described by two things: the number of factors, and the number of levels of each factor. For example, a 2×3 factorial experiment has two factors, the first at 2 levels and the second at 3 levels. Such an experiment has 2×3=6 treatment combinations or cells.
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...
1 if the agreement between the two rankings is perfect; the two rankings are the same. 0 if the rankings are completely independent. −1 if the disagreement between the two rankings is perfect; one ranking is the reverse of the other. Following Diaconis (1988), a ranking can be seen as a permutation of a set of objects.
The financial power struggle behind Bill Belichick's growing football program at North Carolina, and the historic men's basketball program. North Carolina power struggle: Bill Belichick, men's ...
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.
It is often considered to supersede the Weber–Fechner law, which is based on a logarithmic relationship between stimulus and sensation, because the power law describes a wider range of sensory comparisons, down to zero intensity. [1] The theory is named after psychophysicist Stanley Smith Stevens (1906–1973).