Search results
Results from the WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
The set of those translates partitions the circle into a countable collection of pairwise disjoint sets, which are all pairwise congruent. Since X is not measurable for any rotation-invariant countably additive finite measure on S , finding an algorithm to form a set from selecting a point in each orbit requires that one add the axiom of choice ...
The covering number quantifies the size of a set and can be applied to general metric spaces. Two related concepts are the packing number , the number of disjoint balls that fit in a space, and the metric entropy , the number of points that fit in a space when constrained to lie at some fixed minimum distance apart.
Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set S and a list of subsets of S. Then, the set packing problem asks if some k subsets in the list are pairwise disjoint (in other words, no two of them share an element).
Then consider ,, …, to be a maximal collection of pairwise disjoint sets (that is, is the empty set unless =, and every set in intersects with some ). Because we assumed that W {\displaystyle W} had no sunflower of size r {\displaystyle r} , and a collection of pairwise disjoint sets is a sunflower, t < r {\displaystyle t<r} .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
All pairs are pairwise-disjoint; Every winning-set contains at least one pair. Whenever Maker picks an element of a pair, Breaker picks the other element of the same pair. At the end, Breaker has an element in each pair; by condition 2, he has an element in each winning-set. An example of such pairing-strategy for 5-by-5 tic-tac-toe is shown above.
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [3]