Search results
Results from the WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
The set system consists of pairwise disjoint sets , …, with sizes ,,, …, respectively, as well as two additional disjoint sets ,, each of which contains half of the elements from each . On this input, the greedy algorithm takes the sets S k , … , S 1 {\displaystyle S_{k},\ldots ,S_{1}} , in that order, while the optimal solution consists ...
Sierpiński-Dynkin's π-𝜆 theorem: [3] If is a π-system and is a Dynkin system with , then {}.. In other words, the 𝜎-algebra generated by is contained in . Thus a Dynkin system contains a π-system if and only if it contains the 𝜎-algebra generated by that π-system.
Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set S and a list of subsets of S. Then, the set packing problem asks if some k subsets in the list are pairwise disjoint (in other words, no two of them share an element).
Then consider ,, …, to be a maximal collection of pairwise disjoint sets (that is, is the empty set unless =, and every set in intersects with some ). Because we assumed that W {\displaystyle W} had no sunflower of size r {\displaystyle r} , and a collection of pairwise disjoint sets is a sunflower, t < r {\displaystyle t<r} .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The set of those translates partitions the circle into a countable collection of pairwise disjoint sets, which are all pairwise congruent. Since X is not measurable for any rotation-invariant countably additive finite measure on S , finding an algorithm to form a set from selecting a point in each orbit requires that one add the axiom of choice ...
Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge between them would result in a cycle.