Search results
Results from the WOW.Com Content Network
The terms anode and cathode are not defined by the voltage polarity of electrodes, but are usually defined by the direction of current through the electrode. An anode usually is the electrode of a device through which conventional current (positive charge) flows into the device from an external circuit, while a cathode usually is the electrode through which conventional current flows out of ...
The cathode supplies electrons to the positively charged cations which flow to it from the electrolyte (even if the cell is galvanic, i.e., when the cathode is positive and therefore would be expected to repel the positively charged cations; this is due to electrode potential relative to the electrolyte solution being different for the anode ...
The symbol used to represent a particular type of diode in a circuit diagram conveys the general electrical function to the reader. There are alternative symbols for some types of diodes, though the differences are minor. The triangle in the symbols points to the forward direction, i.e. in the direction of conventional current flow.
The cathode is in many ways the opposite of the anode. The name (also coined by Whewell) comes from the Greek words κάτω (kato), 'downwards' and ὁδός (hodós), 'a way'. It is the positive electrode, meaning the electrons flow from the electrical circuit through the cathode into the non-metallic part of the electrochemical cell.
It may also be defined as the potential difference between the charged metallic rods and salt solution. The electrode potential has its origin in the potential difference developed at the interface between the electrode and the electrolyte. It is common, for instance, to speak of the electrode potential of the M + /M redox couple.
The black band on the right is the cathode side. Diode schematic symbol vs cathode marking on the package. The 1N4148 is a standard silicon switching signal diode. It is one of the most popular and long-lived switching diodes because of its dependable specifications and low cost. Its name follows the JEDEC nomenclature.
The metal side acts as the anode, and n-type semiconductor acts as the cathode of the diode; meaning conventional current can flow from the metal side to the semiconductor side, but not in the opposite direction. This Schottky barrier results in both very fast switching and low forward voltage drop.
A standard value for breakdown voltage is for instance 5.6 V. This means that the voltage at the cathode cannot be more than about 5.6 V higher than the voltage at the anode (though there is a slight rise with current), because the diode breaks down, and therefore conducts, if the voltage gets any higher.